Paired-Domination Game Played in Graphs

Authors

Abstract:

In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Dominator dominates at least one vertex not dominated by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not previously chosen that is a neighbor of the vertex played by Dominator on his previous move. This process eventually produces a paired-dominating set of vertices of $G$; that is, a dominating set in $G$ that induces a subgraph that contains a perfect matching. Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to maximize it. The game paired-domination number $gpr(G)$ of $G$ is the number of vertices chosen when Dominator starts the game and both players play optimally. Let $G$ be a graph on $n$ vertices with minimum degree at least~$2$. We show that $gpr(G) le frac{4}{5}n$, and this bound is tight. Further we show that if $G$ is $(C_4,C_5)$-free, then $gpr(G) le frac{3}{4}n$, where a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. If $G$ is $2$-connected and bipartite or if $G$ is $2$-connected and the sum of every two adjacent vertices in $G$ is at least~$5$, then we show that $gpr(G) le frac{3}{4}n$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The domination game played on unions of graphs

In a graph G, a vertex is said to dominate itself and its neighbors. The Domination game is a two player game played on a finite graph. Players alternate turns in choosing a vertex that dominates at least one new vertex. The game ends when no move is possible, that is when the set of chosen vertices forms a dominating set of the graph. One player (Dominator) aims to minimize the size of this se...

full text

Paired-domination in inflated graphs

The inflation GI of a graph G with n(G) vertices and m(G) edges is obtained from G by replacing every vertex of degree d of G by a clique Kd. A set S of vertices in a graph G is a paired dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired domination number γp(G) is the minimum cardinality of a paired d...

full text

Domination game critical graphs

17 The domination game is played on a graph G by two players who alternately take 18 turns by choosing a vertex such that in each turn at least one previously undominated 19 vertex is dominated. The game is over when each vertex becomes dominated. One 20 of the players, namely Dominator, wants to finish the game as soon as possible, while 21 the other one wants to delay the end. The number of t...

full text

Upper paired-domination in claw-free graphs

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by pr(G). We establish bounds on pr(G) for connected claw-free graphs G in terms of the number n of v...

full text

Paired domination in prisms of graphs

The paired domination number γpr(G) of a graph G is the smallest cardinality of a dominating set S of G such that 〈S〉 has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V (G)| independent edges. We provide characterizations of the following three classes of graphs: γpr(πG) = 2γpr(G) for all πG; γpr(K2 G) = 2γpr(...

full text

Paired-Domination in Subdivided Star-Free Graphs

A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a paired-dominating set of G. In [1], the authors gave tight bounds for paired-dominating sets of generalized claw-free graphs. Yet, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  79- 94

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023